鸡兔同笼的公式(“鸡兔同笼”问题解题指导,快收藏给孩子)

内容头部广告位(手机)

基本题型

已知鸡兔的总只数和总腿数。求鸡和兔各多少只。

解题关键:采用假设法,假设全是一种动物(如全是鸡或全是兔),然后根

据腿的差数可以推断出一种动物的头数。

解题规律:

方法1、

假设全是鸡,兔的只数=(总腿数-总只数×2)÷(每只兔的脚数-每只鸡的脚数);

方法2、

假设全是兔,鸡的只数=(总只数×4-总腿数)÷(每只兔的脚数-每只鸡的脚数)

例1:有鸡兔共20只,脚44只,鸡兔各几只?

解:方法1、假设全是鸡

( 44 — 20 × 2) ÷( 4 - 2 )=2(只)。。。。。。兔的只数

(总腿数- 总只数× 2)÷(每只兔的脚数-每只鸡的脚数)

20-2=18(只)。。。。。。鸡的只数

方法2、假设全是兔

( 20 ×4-44) ÷( 4 - 2 )=18(只)。。。。。。鸡的只数

(总只数×4-总腿数)÷(每只兔的脚数- 每只鸡的脚数)

例2. 小朋友们去划船,大船可以坐10人,小船坐6人,小朋友们共租了15只船,已知乘大船的人比乘小船的人多22人,问大船几只,小船几只?

解:方法1、假设都是小船

大船:(6×15+22)÷(6+10)=7(只);小船:15-7=8(只)

方法2、假设都是大船

小船:(10×15-22)÷(6+10)=8(只) 大船:15-8=7(只) 20-18=2 (只)。。。。。。兔的只数

常见题型

1、已知总头数和鸡兔脚数的差数,求鸡兔各多少只

(1)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,

方法1:

(每只鸡脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数

方法2:

(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;

总头数-鸡数=兔数。

方法3:

列方程解答根据鸡兔脚数的差数,找出鸡与兔的只数关系

例1. 有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?

解法1:兔数:(2×30+60)÷(2+4)=20(只);鸡数:30-20=10(只)

解法2:鸡数:(4×30+60)÷(2+4)=10(只)兔数:30-10=20(只)

解法3:根据“兔脚比鸡脚多60只”也就是“鸡脚比兔脚少60只”,那么鸡的只数

比兔的2倍少(60÷2=)30(只)

解:设兔有X只,那么鸡有2X-60÷2(只)即:2X-30(只)

2X-60÷2+X=30

3X-30=30

3X=60

X=20 30-20=10(只)

(2)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;

2、鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),

〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;

〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

3、得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:

(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+

每只不合格品扣分数)=不合格品数。

例题

例3. 有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?

解:鸡数:〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2 =20÷2=10(只)

兔数:〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2 =12÷2=6(只)

解析:首先用鸡兔互换的数相加,大家想想,那出来的结果是什么,是不是鸡兔的数都变成鸡兔的总数,已经是变成鸡兔总数只的六条腿的小怪物,所以(52+44)÷(4+2),得出鸡兔的和,这时其实就变成一道普通的鸡兔同笼问题,但如果我们再看看用鸡兔互换的数相减得到的是什么数,为什么交换会有差呢?因为兔子4条腿,鸡2条腿,所以每把一只鸡换成一只兔子就会多出两条腿,所以(52-44)÷(4-2),得出鸡兔的差。那么这就变成和差问题,下面大家就能很容易解答。

例4. 小朋友们去划船,大船可以坐10人,小船坐6人,能坐130人,如果把大船和小船的只数互换则少坐20人,问大船几只,小船几只?

解:小船:〔(130-20+130)÷(10+6)+20÷(10-6)〕÷2=20÷2=10(只)

大船:〔(130-20+130)÷(10+6)-20÷(10-6)〕÷2=10÷2=5(只)

例5. 有鸡兔共30只,鸡脚比兔脚多30只,问鸡兔各多少只?

解:兔数:(2×30-30)÷(2+4)=5(只);

鸡数:30-5=25(只)

解析:首先假设都是鸡,那么有60只脚,然后再减去鸡兔脚数之差,那么剩下的和兔数相同的鸡和兔,也就是相当也是一种六条腿的小怪物,所以再除以6,就自然得出兔子的数。

例6. 小朋友们去划船,大船可以坐10人,小船坐6人,小朋友们共租了15只船,已知乘小船的人比乘大船的人多42人,问大船几只,小船几只?

解:大船:(6×15-42)÷(6+10)=3(只);

小船:15-3=12(只)

或者

小船:(10×15+42)÷(6+10)=12(只)

大船:15-12=3(只)

总头数-鸡数=兔数。

例7. 灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?

解一 (4×1000-3525)÷(4+15)

=475÷19=25(个)

解二 1000-(15×1000+3525)÷(4+15)

=1000-18525÷19

=1000-975=25(个)(答略)

(得失问题也称运玻璃器皿问题,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……它的解法显然可套用上述公式。)

课堂练习

1. 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?

解:有兔(44-2×16)÷(4-2)=6(只),

有鸡16-6=10(只)。

答:有6只兔,10只鸡。

2. 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人?

假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。

3. 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?

假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304—280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19—11=8(元),所以 买普通文化用品 24÷8=3(套),

买彩色文化用品 16-3=13(套)。

4. 鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只?

分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200-20=180(只)。现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100—30=70(只)。解:有兔(2×100—20)÷(2+4)=30(只),有鸡100—30=70(只)。

答:有鸡70只,兔30只。

5. 现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。问:大、小瓶各有多少个?

解:小瓶有(4×50-20)÷(4+2)=30(个),

大瓶有50-30=20(个)。

答:有大瓶20个,小瓶30个。

6. 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?

分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。

利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。这样每辆小卡车能装144÷9=16(吨)。由此可求出这批钢材有多少吨。

解:4×36÷(45-36)×45=720(吨)。

答:这批钢材有720吨。

7. 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。问:搬运过程中共打破了几只花瓶?

分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。实际上只得到115.5元,少得120-115.5=4.5(元)。搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。

解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。

答:共打破3只花瓶。

8. 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?

分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了

12×(2+3)=60(下)。

可求出小乐每分钟跳

(780-60)÷(2+3+3)=90(下),

小乐一共跳了90×3=270(下),因此小喜比小乐共多跳

780-270×2=240(下)。

课后作业

1. 某校有100名学生参加数学竞赛,平均分63分,其中男生平均分60分,女生平均分70分,男同学比女同学多________人。

女生:(63?100-60?100)?(70-60)=30(人)

男生:100-30=70(人)

70-30=40(人)

2. 有黑白棋子一堆,其中黑子的个数是白子个数的2倍,如果从这堆棋子中每次同时取出黑子4个,白子3个。那么取出________次后,白子余1个,而黑子余18个。

由黑子的个数是白子个数的2倍,假如每次取出白子2个(黑子的一半)的话,那么最后余下黑子18个,白子应余下18?2=9(个)

现在只余下一个白子,这是因为实际每次取3个比假设每次多取一个,故共取(9-1)?(3-2)=8(次)

3. 学生买回4个篮球5个排球一共用185元,一个篮球比一个排球贵8元,篮球的单价是________元。

(185-4?8)?(5+4)+8=25(元)

4. 小强爱好集邮,他用1元钱买了4分和8分的两种邮票,共20张。那么他买了4分邮票________张.

(20?8-100)?(8-4)=15(张)

5. 松鼠妈妈采松子,晴天每天采20个,雨天每天可采12个,它一连采了112个,平均每天采14个。这几天中有________天是雨天。

(112?14?20-112)?(20-12)=6(天)

6. 一些2分与5分的硬币共299分,其中2分的个数是5分个数的4倍,5分的有________个。

299?(2?4+5)=23(个)

7. 某人领得工资240元,有2元、5元、10元三种人民币共50张,其中2元和5元的张数一样多,那么10元的有________张。

(10?50-240)?[10-(2+5)?2]=40(张)

[ 240-(2+5)?(40?2)]?10=10(张)

8. 买一些4分与8分的邮票共花6元8角,已知8分的邮票比4分的多40张,那么8分的邮票有______张.

4分:(680-8?40)?(8+4)=30(张)

8分:30+40=70(张)

9.鸡兔共200只,鸡的脚比兔的脚少56只,则鸡有几只,兔有几只?

兔:(200+56?2)?(2+1)=76(只)

鸡:200-76=124(只)

10.有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只?

(0.2?2000-379.6)?(1+0.2)=17(只)

11.某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分。小华得了76分,问他做对几题?

解析:76分比满分少24分,做错一题少6分,不做少5分,24分只能做错4题,那么没有没做,16题做对。

12.甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?

解析:假设甲中10发,乙就中14-10=4(发)。甲得4?10=40(分),乙得5?4-3?6=2(分)。此题条件“甲比乙多10分”相差(40-2)-10=28(分),甲少中1发,少4+2=6(分),乙可增加5+3=8(分).。28?(8+6)=2 10-2=8(发)??甲. 14-8=6(发)??乙.

内容底部广告位(手机)
标签:

管理员
草根站长管理员

专注网站优化+网络营销,只做有思想的高价值网站,只提供有担当的营销服务!

上一篇:恋爱没开窍的女生表现(女生一旦开窍,就像开了挂!4个开窍的表现)
下一篇:返回列表

相关推荐

发表评论

留言与评论(共有 0 条评论)
   
验证码: