前言
时光飞逝,两周过去了,是时候继续填坑了,不然又要被网友喷了。
本文是秒杀系统的第三篇,通过实际代码讲解,帮助你了解秒杀系统设计的关键点,上手实际项目。
本篇主要讲解秒杀系统中,关于抢购(下单)接口相关的单用户防刷措施,主要说两块内容:
- 抢购接口隐藏
- 单用户限制频率(单位时间内限制访问次数)
当然,这两个措施放在任何系统中都有用,严格来说并不是秒杀系统独特的设计,所以今天的内容也会比较的通用。
此外,我做了一张流程图,描述了目前我们实现的秒杀接口下单流程:
前文回顾和文章规划
- 零基础上手秒杀系统(一):防止超卖
- 零基础上手秒杀系统(二):令牌桶限流 + 再谈超卖
- 零基础上手秒杀系统(三):抢购接口隐藏 + 单用户限制频率(本篇)
- 零基础上手秒杀系统:使用Redis缓存热点数据
- 零基础上手秒杀系统:消息队列异步处理订单
- …
欢迎关注我的个人公众号获取最全的原创文章:后端技术漫谈(二维码见文章底部)
项目源码在这里
妈妈再也不用担心只会看文章不会实现啦:
https://github.com/qqxx6661/miaosha
正文
秒杀系统介绍
可以翻阅该系列的第一篇文章,这里不再回顾:
零基础上手秒杀系统(一):防止超卖
抢购接口隐藏
在前两篇文章的介绍下,我们完成了防止超卖商品和抢购接口的限流,已经能够防止大流量把我们的服务器直接搞炸,这篇文章中,我们要开始关心一些细节问题。
对于稍微懂点电脑的,又会动歪脑筋的人来说,点击F12打开浏览器的控制台,就能在点击抢购按钮后,获取我们抢购接口的链接。(手机APP等其他客户端可以抓包来拿到)
一旦坏蛋拿到了抢购的链接,只要稍微写点爬虫代码,模拟一个抢购请求,就可以不通过点击下单按钮,直接在代码中请求我们的接口,完成下单。所以就有了成千上万的薅羊毛军团,写一些脚本抢购各种秒杀商品。
他们只需要在抢购时刻的000毫秒,开始不间断发起大量请求,觉得比大家在APP上点抢购按钮要快,毕竟人的速度又极限,更别说APP说不定还要经过几层前端验证才会真正发出请求。
所以我们需要将抢购接口进行隐藏,抢购接口隐藏(接口加盐)的具体做法:
- 每次点击秒杀按钮,先从服务器获取一个秒杀验证值(接口内判断是否到秒杀时间)。
- Redis以缓存用户ID和商品ID为Key,秒杀地址为Value缓存验证值
- 用户请求秒杀商品的时候,要带上秒杀验证值进行校验。
大家先停下来仔细想想,通过这样的办法,能够防住通过脚本刷接口的人吗?
能,也不能。
可以防住的是直接请求接口的人,但是只要坏蛋们把脚本写复杂一点,先去请求一个验证值,再立刻请求抢购,也是能够抢购成功的。
不过坏蛋们请求验证值接口,也需要在抢购时间开始后,才能请求接口拿到验证值,然后才能申请抢购接口。理论上来说在访问接口的时间上受到了限制,并且我们还能通过在验证值接口增加更复杂的逻辑,让获取验证值的接口并不快速返回验证值,进一步拉平普通用户和坏蛋们的下单时刻。所以接口加盐还是有用的!
下面我们就实现一种简单的加盐接口代码,抛砖引玉。
代码逻辑实现
代码还是使用之前的项目,我们在其上面增加两个接口:
- 获取验证值接口
- 携带验证值下单接口
由于之前我们只有两个表,一个stock表放库存商品,一个stockOrder订单表,放订购成功的记录。但是这次涉及到了用户,所以我们新增用户表,并且添加一个用户张三。并且在订单表中,不仅要记录商品id,同时要写入用户id。
整个SQL结构如下,讲究一个简洁,暂时不加入别的多余字段:
------------------------------
--Tablestructureforstock
------------------------------
DROPTABLEIFEXISTS`stock`;
CREATETABLE`stock`(
`id`int(11)unsignedNOTNULLAUTO_INCREMENT,
`name`varchar(50)NOTNULLDEFAULT''COMMENT'名称',
`count`int(11)NOTNULLCOMMENT'库存',
`sale`int(11)NOTNULLCOMMENT'已售',
`version`int(11)NOTNULLCOMMENT'乐观锁,版本号',
PRIMARYKEY(`id`)
)ENGINE=InnoDBAUTO_INCREMENT=3DEFAULTCHARSET=utf8;
------------------------------
--Recordsofstock
------------------------------
INSERTINTO`stock`VALUES('1','iphone','50','0','0');
INSERTINTO`stock`VALUES('2','mac','10','0','0');
------------------------------
--Tablestructureforstock_order
------------------------------
DROPTABLEIFEXISTS`stock_order`;
CREATETABLE`stock_order`(
`id`int(11)unsignedNOTNULLAUTO_INCREMENT,
`sid`int(11)NOTNULLCOMMENT'库存ID',
`name`varchar(30)NOTNULLDEFAULT''COMMENT'商品名称',
`user_id`int(11)NOTNULLDEFAULT'0',
`create_time`timestampNOTNULLDEFAULTCURRENT_TIMESTAMPONUPDATECURRENT_TIMESTAMPCOMMENT'创建时间',
PRIMARYKEY(`id`)
)ENGINE=InnoDBDEFAULTCHARSET=utf8;
------------------------------
--Recordsofstock_order
------------------------------
------------------------------
--Tablestructureforuser
------------------------------
DROPTABLEIFEXISTS`user`;
CREATETABLE`user`(
`id`bigint(20)NOTNULLAUTO_INCREMENT,
`user_name`varchar(255)NOTNULLDEFAULT'',
PRIMARYKEY(`id`)
)ENGINE=InnoDBAUTO_INCREMENT=2DEFAULTCHARSET=utf8mb4;
------------------------------
--Recordsofuser
------------------------------
INSERTINTO`user`VALUES('1','张三');
SQL文件在开源代码里也放了,不用担心。
获取验证值接口
该接口要求传用户id和商品id,返回验证值,并且该验证值
Controller中添加方法:
/**
*获取验证值
*@return
*/
@RequestMapping(value="/getVerifyHash",method={RequestMethod.GET})
@ResponseBody
publicStringgetVerifyHash(@RequestParam(value="sid")Integersid,
@RequestParam(value="userId")IntegeruserId){
Stringhash;
try{
hash=userService.getVerifyHash(sid,userId);
}catch(Exceptione){
LOGGER.error("获取验证hash失败,原因:[{}]",e.getMessage());
return"获取验证hash失败";
}
returnString.format("请求抢购验证hash值为:%s",hash);
}
UserService中添加方法:
@Override
publicStringgetVerifyHash(Integersid,IntegeruserId)throwsException{
//验证是否在抢购时间内
LOGGER.info("请自行验证是否在抢购时间内");
//检查用户合法性
Useruser=userMapper.selectByPrimaryKey(userId.longValue());
if(user==null){
thrownewException("用户不存在");
}
LOGGER.info("用户信息:[{}]",user.toString());
//检查商品合法性
Stockstock=stockService.getStockById(sid);
if(stock==null){
thrownewException("商品不存在");
}
LOGGER.info("商品信息:[{}]",stock.toString());
//生成hash
Stringverify=SALT+sid+userId;
StringverifyHash=DigestUtils.md5DigestAsHex(verify.getBytes());
//将hash和用户商品信息存入redis
StringhashKey=CacheKey.HASH_KEY.getKey()+"_"+sid+"_"+userId;
stringRedisTemplate.opsForValue().set(hashKey,verifyHash,3600,TimeUnit.SECONDS);
LOGGER.info("Redis写入:[{}][{}]",hashKey,verifyHash);
returnverifyHash;
}
一个Cache常量枚举类CacheKey:
packagecn.monitor4all.miaoshadao.utils;
publicenumCacheKey{
HASH_KEY("miaosha_hash"),
LIMIT_KEY("miaosha_limit");
privateStringkey;
privateCacheKey(Stringkey){
this.key=key;
}
publicStringgetKey(){
returnkey;
}
}
代码解释:
可以看到在Service中,我们拿到用户id和商品id后,会检查商品和用户信息是否在表中存在,并且会验证现在的时间(我这里为了简化,只是写了一行LOGGER,大家可以根据需求自行实现)。在这样的条件过滤下,才会给出hash值。并且将Hash值写入了Redis中,缓存3600秒(1小时),如果用户拿到这个hash值一小时内没下单,则需要重新获取hash值。
下面又到了动小脑筋的时间了,想一下,这个hash值,如果每次都按照商品+用户的信息来md5,是不是不太安全呢。毕竟用户id并不一定是用户不知道的(就比如我这种用自增id存储的,肯定不安全),而商品id,万一也泄露了出去,那么坏蛋们如果再知到我们是简单的md5,那直接就把hash算出来了!
在代码里,我给hash值加了个前缀,也就是一个salt(盐),相当于给这个固定的字符串撒了一把盐,这个盐是HASH_KEY("miaosha_hash"),写死在了代码里。这样黑产只要不猜到这个盐,就没办法算出来hash值。
这也只是一种例子,实际中,你可以把盐放在其他地方, 并且不断变化,或者结合时间戳,这样就算自己的程序员也没法知道hash值的原本字符串是什么了。
携带验证值下单接口
用户在前台拿到了验证值后,点击下单按钮,前端携带着特征值,即可进行下单操作。
Controller中添加方法:
/**
*要求验证的抢购接口
*@paramsid
*@return
*/
@RequestMapping(value="/createOrderWithVerifiedUrl",method={RequestMethod.GET})
@ResponseBody
publicStringcreateOrderWithVerifiedUrl(@RequestParam(value="sid")Integersid,
@RequestParam(value="userId")IntegeruserId,
@RequestParam(value="verifyHash")StringverifyHash){
intstockLeft;
try{
stockLeft=orderService.createVerifiedOrder(sid,userId,verifyHash);
LOGGER.info("购买成功,剩余库存为:[{}]",stockLeft);
}catch(Exceptione){
LOGGER.error("购买失败:[{}]",e.getMessage());
returne.getMessage();
}
returnString.format("购买成功,剩余库存为:%d",stockLeft);
}
OrderService中添加方法:
@Override
publicintcreateVerifiedOrder(Integersid,IntegeruserId,StringverifyHash)throwsException{
//验证是否在抢购时间内
LOGGER.info("请自行验证是否在抢购时间内,假设此处验证成功");
//验证hash值合法性
StringhashKey=CacheKey.HASH_KEY.getKey()+"_"+sid+"_"+userId;
StringverifyHashInRedis=stringRedisTemplate.opsForValue().get(hashKey);
if(!verifyHash.equals(verifyHashInRedis)){
thrownewException("hash值与Redis中不符合");
}
LOGGER.info("验证hash值合法性成功");
//检查用户合法性
Useruser=userMapper.selectByPrimaryKey(userId.longValue());
if(user==null){
thrownewException("用户不存在");
}
LOGGER.info("用户信息验证成功:[{}]",user.toString());
//检查商品合法性
Stockstock=stockService.getStockById(sid);
if(stock==null){
thrownewException("商品不存在");
}
LOGGER.info("商品信息验证成功:[{}]",stock.toString());
//乐观锁更新库存
saleStockOptimistic(stock);
LOGGER.info("乐观锁更新库存成功");
//创建订单
createOrderWithUserInfo(stock,userId);
LOGGER.info("创建订单成功");
returnstock.getCount()-(stock.getSale()+1);
}
代码解释:
可以看到service中,我们需要验证了:
- 商品信息
- 用户信息
- 时间
- 库存
如此,我们便完成了一个拥有验证的下单接口。
试验一下接口
我们先让用户1,法外狂徒张三登场,发起请求:
http://localhost:8080/getVerifyHash?sid=1&userId=1
得到结果:
控制台输出:
别急着下单,我们看一下redis里有没有存储好key:
木偶问题,接下来,张三可以去请求下单了!
http://localhost:8080/createOrderWithVerifiedUrl?sid=1&userId=1&verifyHash=d4ff4c458da98f69b880dd79c8a30bcf
得到输出结果:
法外狂徒张三抢购成功了!
单用户限制频率
假设我们做好了接口隐藏,但是像我上面说的,总有无聊的人会写一个复杂的脚本,先请求hash值,再立刻请求购买,如果你的app下单按钮做的很差,大家都要开抢后0.5秒才能请求成功,那可能会让脚本依然能够在大家前面抢购成功。
我们需要在做一个额外的措施,来限制单个用户的抢购频率。
其实很简单的就能想到用redis给每个用户做访问统计,甚至是带上商品id,对单个商品做访问统计,这都是可行的。
我们先实现一个对用户的访问频率限制,我们在用户申请下单时,检查用户的访问次数,超过访问次数,则不让他下单!
使用Redis/Memcached
我们使用外部缓存来解决问题,这样即便是分布式的秒杀系统,请求被随意分流的情况下,也能做到精准的控制每个用户的访问次数。
Controller中添加方法:
/**
*要求验证的抢购接口+单用户限制访问频率
*@paramsid
*@return
*/
@RequestMapping(value="/createOrderWithVerifiedUrlAndLimit",method={RequestMethod.GET})
@ResponseBody
publicStringcreateOrderWithVerifiedUrlAndLimit(@RequestParam(value="sid")Integersid,
@RequestParam(value="userId")IntegeruserId,
@RequestParam(value="verifyHash")StringverifyHash){
intstockLeft;
try{
intcount=userService.addUserCount(userId);
LOGGER.info("用户截至该次的访问次数为:[{}]",count);
booleanisBanned=userService.getUserIsBanned(userId);
if(isBanned){
return"购买失败,超过频率限制";
}
stockLeft=orderService.createVerifiedOrder(sid,userId,verifyHash);
LOGGER.info("购买成功,剩余库存为:[{}]",stockLeft);
}catch(Exceptione){
LOGGER.error("购买失败:[{}]",e.getMessage());
returne.getMessage();
}
returnString.format("购买成功,剩余库存为:%d",stockLeft);
}
UserService中增加两个方法:
- addUserCount:每当访问订单接口,则增加一次访问次数,写入Redis
- getUserIsBanned:从Redis读出该用户的访问次数,超过10次则不让购买了!不能让张三做法外狂徒。
@Override
publicintaddUserCount(IntegeruserId)throwsException{
StringlimitKey=CacheKey.LIMIT_KEY.getKey()+"_"+userId;
StringlimitNum=stringRedisTemplate.opsForValue().get(limitKey);
intlimit=-1;
if(limitNum==null){
stringRedisTemplate.opsForValue().set(limitKey,"0",3600,TimeUnit.SECONDS);
}else{
limit=Integer.parseInt(limitNum)+1;
stringRedisTemplate.opsForValue().set(limitKey,String.valueOf(limit),3600,TimeUnit.SECONDS);
}
returnlimit;
}
@Override
publicbooleangetUserIsBanned(IntegeruserId){
StringlimitKey=CacheKey.LIMIT_KEY.getKey()+"_"+userId;
StringlimitNum=stringRedisTemplate.opsForValue().get(limitKey);
if(limitNum==null){
LOGGER.error("该用户没有访问申请验证值记录,疑似异常");
returntrue;
}
returnInteger.parseInt(limitNum)>ALLOW_COUNT;
}
试一试接口
使用前文用的JMeter做并发访问接口30次,可以看到下单了10次后,不让再购买了:
大功告成了。
能否不用Redis/Memcached实现用户访问频率统计
且慢,如果你说你不愿意用redis,有什么办法能够实现访问频率统计吗,有呀,如果你放弃分布式的部署服务,那么你可以在内存中存储访问次数,比如:
- Google Guava的内存缓存
- 状态模式
不知道大家的设计模式复习的怎么样了,如果没有复习到状态模式,可以先去看看状态模式的定义。状态模式很适合实现这种访问次数限制场景。
我的博客和公众号(后端技术漫谈)里,写了个《设计模式自习室》系列,详细介绍了每种设计模式,大家有兴趣可可以看看。【设计模式自习室】开篇:为什么要有设计模式?
这里我就不实现了,毕竟咱们还是分布式秒杀服务为主,不过引用一个博客的例子,大家感受下状态模式的实际应用:
https://www.cnblogs.com/java-my-life/archive/2012/06/08/2538146.html
考虑一个在线投票系统的应用,要实现控制同一个用户只能投一票,如果一个用户反复投票,而且投票次数超过5次,则判定为恶意刷票,要取消该用户投票的资格,当然同时也要取消他所投的票;如果一个用户的投票次数超过8次,将进入黑名单,禁止再登录和使用系统。
publicclassVoteManager{
//持有状体处理对象
privateVoteStatestate=null;
//记录用户投票的结果,Map<String,String>对应Map<用户名称,投票的选项>
privateMap<String,String>mapVote=newHashMap<String,String>();
//记录用户投票次数,Map<String,Integer>对应Map<用户名称,投票的次数>
privateMap<String,Integer>mapVoteCount=newHashMap<String,Integer>();
/**
*获取用户投票结果的Map
*/
publicMap<String,String>getMapVote(){
returnmapVote;
}
/**
*投票
*@paramuser投票人
*@paramvoteItem投票的选项
*/
publicvoidvote(Stringuser,StringvoteItem){
//1.为该用户增加投票次数
//从记录中取出该用户已有的投票次数
IntegeroldVoteCount=mapVoteCount.get(user);
if(oldVoteCount==null){
oldVoteCount=0;
}
oldVoteCount+=1;
mapVoteCount.put(user,oldVoteCount);
//2.判断该用户的投票类型,就相当于判断对应的状态
//到底是正常投票、重复投票、恶意投票还是上黑名单的状态
if(oldVoteCount==1){
state=newNormalVoteState();
}
elseif(oldVoteCount>1&&oldVoteCount<5){
state=newRepeatVoteState();
}
elseif(oldVoteCount>=5&&oldVoteCount<8){
state=newSpiteVoteState();
}
elseif(oldVoteCount>8){
state=newBlackVoteState();
}
//然后转调状态对象来进行相应的操作
state.vote(user,voteItem,this);
}
}
publicclassClient{
publicstaticvoidmain(String[]args){
VoteManagervm=newVoteManager();
for(inti=0;i<9;i++){
vm.vote("u1","A");
}
}
}
结果:
总结
本项目的代码开源在了Github,大家随意使用:
https://github.com/qqxx6661/miaosha
最后,感谢大家的喜爱。
希望大家多多支持我的公主号:后端技术漫谈。
参考
- https://cloud.tencent.com/developer/article/1488059
- https://juejin.im/post/5dd09f5af265da0be72aacbd
- https://zhenganwen.top/posts/30bb5ce6/
- https://www.cnblogs.com/java-my-life/archive/2012/06/08/2538146.html
关注我
我是一名后端开发工程师。
主要关注后端开发,数据安全,物联网,边缘计算方向,欢迎交流。
各大平台都可以找到我
- 微信公众号:后端技术漫谈
- Github:@qqxx6661
- CSDN:@Rude3knife
- 知乎:@后端技术漫谈
- 简书:@蛮三刀把刀
- 掘金:@蛮三刀把刀
原创博客主要内容
- 后端开发技术
- Java面试知识点
- 设计模式/数据结构
- LeetCode/剑指offer 算法题解析
- SpringBoot/SpringCloud入门实战系列
- 数据分析/数据爬虫
- 逸闻趣事/好书分享/个人生活
个人公众号:后端技术漫谈
公众号:后端技术漫谈.jpg
如果文章对你有帮助,不妨收藏,转发,在看起来~
发表评论